The Plant Pathology Journal 2007;23(1):3-6.
Published online March 31, 2007.
Establishment of the Chickpea Wilt Pathogen Fusarium oxysporum f. sp. cicerisin the Soil through Seed Transmission
S. Pande, J. Narayana Rao, M. Sharma
Abstract
Chickpea wilt caused by Fusarium oxysporum f. sp. ciceris (FOC) is the most destructive disease in India. It is seed-borne as well as soil-borne pathogen. The role of seed-borne FOC in introducing and establishing wilt in FOC free soils is unknown. Using seeds of FOC infected chickpea cultivar K 850, we provided an evidence of establishing wilt disease in the FOC free soils within three crop cycles or seasons. In the first cycle, typical wilt symptoms were observed in 24 pots in 41 days after sowing. These 24 pots were used for second and third cycles without changing the soil. These 24 pots were sown with seeds collected from healthy plants of a susceptible cultivar JG 62, one seed per pot and development of wilt symptom was recorded. Wilt symptoms appeared in all the pots 26 days after sowing in second cycle and in 16 days after sowing in third cycle. On selective medium, all of the wilted plants yielded FOC in all the three cycles indicating that the mortality was due to wilt. FOC propagules on selective medium were 172, 1197, and 2280 g-1 soil at the end of the first, second, and third cycles, respectively. These studies indicated that Fusarium wilt of chickpea is seed-borne and seeds harvested from wilted plants when mixed with healthy seeds can carry the wilt fungus to new areas and can establish the disease in the soil to economic threshold levels within three seasons.
Key Words: chickpea, wilt, Fusarium oxysporum f. sp.ciceris, soil borne, seed borne


ABOUT
BROWSE ARTICLES
EDITORIAL POLICY
FOR CONTRIBUTORS
Editorial Office
Rm,904 (New Bldg.) The Korean Science & Technology Center 22,
Teheran-ro 7-Gil, Gangnamgu, Seoul 06130, Korea
Tel: +82-2-557-9360    Fax: +82-2-557-9361    E-mail: paper@kspp.org                

Copyright © 2024 by Korean Society of Plant Pathology.

Developed in M2PI

Close layer
prev next