Adachi, K. and Hamer, J. E. 1998. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus
Magnaporthe grisea.
Plant Cell. 10:1361-1374.
Bourett, T. M. and Howard, R. J. 1990. In vitro development of penetration structures in the rice blast fungus
Magnaporthe grisea.
Can. J. Bot. 68:329-342.
Chi, M.-H., Park, S.-Y., Kim, S. and Lee, Y.-H. 2009. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host.
PLoS Pathog. 5:e1000401.
Chi, M.-H., Park, S.-Y. and Lee, Y.-H. 2009. A quick and safe method for fungal DNA extraction.
Plant Pathol. J. 25:108-111.
Choi, J., Cheong, K., Jung, K., Jeon, J., Lee, G.-W., Kang, S., Kim, S., Lee, Y.-W. and Lee, Y.-H. 2013 CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and oomycete. Nucleic Acids Res. 41:D714-D719.
Choi, W. and Dean, R. A. 1997. The adenylate cyclase gene MAC1 of
Magnaporthe grisea controls appressorium formation and other aspects of growth and development.
Plant Cell. 9:1973-1983.
DeZwaan, T. M., Carroll, A. M., Valent, B. and Sweigard, J. A. 1999.
Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues.
Plant Cell. 11:2013-2030.
Ebbole, D. J. 2007. Magnaporthe as a model for understanding host-pathogen interactions. Annu. Rev. Phytopathol. 45:437-456.
Gilbert, R. D., Johnson, A. M. and Dean, R. A. 1996. Chemical signals responsible for appressorium formation in the rice blast fungus
Magnaporthe grisea.
Physiol. Mol. Plant Pathol. 48:335-346.
Goh, J., Jeon, J. and Lee, Y. H. 2017. ER retention receptor,
MoERR1 is required for fungal development and pathogenicity in the rice blast fungus, Magnaporthe oryzae.
Sci. Rep. 7:1259.
Gong, X., Hurtado, O., Wang, B., Wu, C., Yi, M., Giraldo, M., Valent, B., Goodin, M. and Farman, M. 2015. pFPL vectors for high-throughput protein localization in fungi: detecting cytoplasmic accumulation of putative effector proteins.
Mol. Plant-Microbe Interact. 28:107-121.
Guo, M., Chen, Y., Du, Y., Dong, Y., Guo, W., Zhai, S., Zhang, H., Dong, S., Zhang, Z., Wang, Y., Wang, P. and Zheng, X. 2011. The bZIP transcription factor
MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus
Magnaporthe oryzae.
PLoS Pathog. 7:e1001302.
Islam, M. T., Kim, K.-H. and Choi, J. 2019. Wheat blast in Bangladesh: the current situation and future impacts.
Plant Pathol. J. 35:1-10.
Käll, L., Krogh, A. and Sonnhammer, E. L. 2007. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server.
Nucleic Acids Res. 35:W429-W432.
Kamakura, T., Yamaguchi, S., Saitoh, K.-I., Teraoka, T. and Yamaguchi, I. 2002. A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of
Magnaporthe grisea during appressorium differentiation.
Mol. Plant-Microbe Interact. 15:437-444.
Kim, S., Park, S.-Y., Kim, K. S., Rho, H.-S., Chi, M.-H., Choi, J., Park, J., Kong, S., Park, J., Goh, J. and Lee, Y.-H. 2009. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus
Magnaporthe oryzae.
PLoS Genet. 5:e1000757.
Koga, H., Dohi, K., Nakayachi, O. and Mori, M. 2004. A novel inoculation method of
Magnaporthe grisea for cytological observation of the infection process using intact leaf sheaths of rice plants.
Physiol. Mol. Plant Pathol. 64:67-72.
Kong, L.-A., Li, G.-T., Liu, Y., Liu, M.-G., Zhang, S.-J., Yang, J., Zhou, X.-Y., Peng, Y.-L. and Xu, J.-R. 2013. Differences between appressoria formed by germ tubes and appressoriumlike structures developed by hyphal tips in
Magnaporthe oryzae.
Fungal Genet. Biol. 56:33-41.
Kou, Y., Tan, Y. H., Ramanujam, R. and Naqvi, N. I. 2017. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast.
New Phytol. 214:330-342.
Kulkarni, R. D., Thon, M. R., Pan, H. and Dean, R. A. 2005. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus
Magnaporthe grisea.
Genome Biol. 6:R24.
Lee, Y.-H. and Dean, R. A. 1993. cAMP regulates infection structure formation in the plant pathogenic fungus
Magnaporthe grisea.
Plant Cell. 5:693-700.
Liu, S. and Dean, R. A. 1997. G protein α subunit genes control growth, development, and pathogenicity of
Magnaporthe grisea.
Mol. Plant-Microbe Interact. 10:1075-1086.
Liu, W., Zhou, X., Li, G., Li, L., Kong, L., Wang, C., Zhang, H. and Xu, J.-R. 2011. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation.
PLoS Pathog. 7:e1001261.
Ramanujam, R., Calvert, M. E., Selvaraj, P. and Naqvi, N. I. 2013. The late endosomal HOPS complex anchors active Gprotein signaling essential for pathogenesis in
Magnaporthe oryzae.
PLoS Pathog. 9:e1003527.
Samalova, M., Meyer, A. J., Gurr, S. J. and Fricker, M. D. 2014. Robust anti-oxidant defences in the rice blast fungus
Magnaporthe oryzae confer tolerance to the host oxidative burst.
New Phytol. 201:556-573.
Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. 1626 pp.
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0.
Mol. Biol. Evol. 30:2725-2729.
Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice.
Nucleic Acids Res. 22:4673-4680.
Xu, J.-R. and Hamer, J. E. 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus
Magnaporthe grisea.
Genes Dev. 10:2696-2706.