Abdelkareem, A., Thagun, C., Nakayasu, M., Mizutani, M., Hashimoto, T. and Shoji, T. 2017. Jasmonate-induced biosynthesis of steroidal glycoalkaloids depends on
COI1 proteins in tomato.
Biochem. Biophys. Res. Commun. 489:206-210.
Antico, C. J., Colon, C., Banks, T. and Ramonell, K. M. 2012. Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens.
Front. Biol. 7:48-56.
Audenaert, K., De Meyer, G. B. and Höfte, M. M. 2002. Abscisic acid determines basal susceptibility of tomato to
Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms.
Plant Physiol. 128:491-501.
Berens, M. L., Berry, H. M., Mine, A., Argueso, C. T. and Tsuda, K. 2017. Evolution of hormone signaling networks in plant defense.
Annu. Rev. Phytopathol. 55:401-425.
Bitancourt, A. A. and Jenkins, A. E. 1936. Elsinoe fawcettii, the perfect stage of the citrus scab fungus. Phytopathology. 26:393-395.
Carvalho, K., de Campos, M. K. F., Pereira, L. F. P. and Vieira, L. G. E. 2010. Reference gene selection for real-time quantitative polymerase chain reaction normalization in “Swingle” citrumelo under drought stress.
Anal. Biochem. 402:197-199.
Chung, K.-R. 2011.
Elsinoë fawcettii and
Elsinoë australis: the fungal pathogens causing citrus scab.
Mol. Plant Pathol. 12:123-135.
De Vleesschauwer, D., Yang, Y., Cruz, C. V. and Höfte, M. 2010. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling.
Plant Physiol. 152:2036-2052.
Dewdney, J., Reuber, T. L., Wildermuth, M. C., Devoto, A., Cui, J., Stutius, L. M., Drummond, E. P. and Ausubel, F. M. 2000. Three unique mutants of
Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen.
Plant J. 24:205-218.
Fan, W. and Dong, X. 2002. In vivo interaction between
NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in
Arabidopsis.
Plant Cell. 14:1377-1389.
Finkelstein, R. R., Gampala, S. S. and Rock, C. D. 2002. Abscisic acid signaling in seeds and seedlings.
Plant Cell. 14 Suppl:S15-S45.
Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. 2006. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks.
Curr. Opin. Plant Biol. 9:436-442.
Gopal, K., Govindarajulu, B., Ramana, K. T. V., Kishore Kumar, C. S., Gopi, V., Gouri Sankar, T., Mukunda Lakshmi, L., Naga Lakshmi, T. and Sarada, G. 2014. Citrus scab (Elsinoe fawcettii): a review. Res. Rev. J. Agric. Allied Sci. 3:49-58.
He, Y., Han, J., Liu, R., Ding, Y., Wang, J., Sun, L., Yang, X., Zeng, Y., Wen, W., Xu, J., Zhang, H., Yan, X., Chen, Z., Gu, Z., Chen, H., Tang, H., Deng, X. and Cheng, Y. 2018. Integrated transcriptomic and metabolomic analyses of a wax deficient citrus mutant exhibiting jasmonic acid-mediated defense against fungal pathogens.
Hortic. Res. 5:43.
Hok, S., Allasia, V., Andrio, E., Naessens, E., Ribes, E., Panabières, F., Attard, A., Ris, N., Clément, M., Barlet, X., Marco, Y., Grill, E., Eichmann, R., Weis, C., Hückelhoven, R., Ammon, A., Ludwig-Müller, J., Voll, L. M. and Keller, H. 2014. The receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 attenuates abscisic acid responses in
Arabidopsis.
Plant Physiol. 166:1506-1518.
Hyun, J.-W., Paudyal, D. P. and Hwang, R.-Y. 2015. Improved method to increase conidia production from isolates of different pathotypes of citrus scab pathogen Elsinoe spp.
Res. Plant Dis. 21:231-234.
Hyun, J.-W., Timmer, L. W., Lee, S.-C., Yun, S.-H., Ko, S.-W. and Kim, K.-S. 2001. Pathological characterization and molecular analysis of
Elsinoe isolates causing scab diseases of citrus in Jeju Island in Korea.
Plant Dis. 85:1013-1017.
Hyun, J. W., Yi, S. H., Mackenzie, S. J., Timmer, L. W., Kim, K. S., Kang, S. K., Kwon, H. M. and Lim, H. C. 2009. Pathotypes and genetic relationship of worldwide collections of
Elsinoë spp. causing scab diseases of citrus.
Phytopathology. 99:721-728.
Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2
−ΔΔCT method.
Methods. 25:402-408.
Mauch-Mani, B. and Mauch, F. 2005. The role of abscisic acid in plant-pathogen interactions.
Curr. Opin. Plant Biol. 8:409-414.
Mafra, V., Kubo, K. S., Alves-Ferreira, M., Ribeiro-Alves, M., Stuart, R. M., Boava, L. P., Rodrigues, C. M. and Machado, M. A. 2012. Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions.
PLoS ONE. 7:e31263.
McAdam, E. L., Reid, J. B. and Foo, E. 2018. Gibberellins promote nodule organogenesis but inhibit the infection stages of nodulation.
J. Exp. Bot. 69:2117-2130.
Oliveira, M. B., Junior, M. L., Grossi-de-Sá, M. F. and Petrofeza, S. 2015. Exogenous application of methyl jasmonate induces a defense response and resistance against Sclerotinia sclerotiorum in dry bean plants.
J. Plant Physiol. 182:13-22.
Park, S.-Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.-F. F., Alfred, S. E., Bonetta, D., Finkelstein, R., Provart, N. J., Desveaux, D., Rodriguez, P. L., McCourt, P., Zhu, J.-K., Schroeder, J. I., Volkman, B. F. and Cutler, S. R. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins.
Science. 324:1068-1071.
Paudyal, D. P. and Hyun, J.-W. 2015. Physical changes in satsuma mandarin leaf after infection of
Elsinoë fawcettii causing citrus scab disease.
Plant Pathol. J. 31:421-427.
Paudyal, D. P., Hyun, J.-W. and Hwang, R.-Y. 2017. Infection and symptom development by citrus scab pathogen
Elsinoë fawcettii on leaves of satsuma mandarin.
Eur. J. Plant Pathol. 148:807-816.
Rieu, I., Ruiz-Rivero, O., Fernandez-Garcia, N., Griffiths, J., Powers, S. J., Gong, F., Linhartova, T., Eriksson, S., Nilsson, O., Thomas, S. G., Phillips, A. L. and Hedden, P. 2008. The gibberellin biosynthetic genes
AtGA20ox1 and
AtGA20ox2 act, partially redundantly, to promote growth and development throughout the
Arabidopsis life cycle.
Plant J. 53:488-504.
Shanmugam, G., Jeon, J. and Hyun, J.-W. 2020. Draft genome sequences of
Elsinoë fawcettii and
Elsinoë australis causing scab diseases on citrus.
Mol. Plant-Microbe Interact. 33:135-137.
Shigenaga, A. M. and Argueso, C. T. 2016. No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens.
Semin. Cell Dev. Biol. 56:174-189.
Shimizu, T., Tanizawa, Y., Mochizuki, T., Nagasaki, H., Yoshioka, T., Toyoda, A., Fujiyama, A., Kaminuma, E. and Nakamura, Y. 2017. Draft sequencing of the heterozygous diploid genome of Satsuma (
Citrus unshiu Marc.) using a hybrid assembly approach.
Front. Genet. 8:180.
Staswick, P. E., Tiryaki, I. and Rowe, M. L. 2002. Jasmonate response locus
JAR1 and several related
Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation.
Plant Cell. 14:1405-1415.
Sun, T.-P. 2008. Gibberellin metabolism, perception and signaling pathways in
Arabidopsis.
Arabidopsis Book. 6:e0103.
Sussmilch, F. C., Brodribb, T. J. and McAdam, S. 2017. Up-regulation of
NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but
AHK1 is not required.
J. Exp. Bot. 68:2913-2918.
Stowe, B. B. and Yamaki, T. 1957. The history and physiological action of the gibberellins.
Annu. Rev. Plant Physiol. 8:181-216.
Timmer, L. W., Priest, M., Broadbent, P. and Tan, M.-K. 1996. Morphological and pathological characterization of species of
Elsinoe causing scab diseases of citrus.
Phytopathology. 86:1032-1038.
Ton, J., Flors, V. and Mauch-Mani, B. 2009. The multifaceted role of ABA in disease resistance.
Trends Plant Sci. 14:310-317.
Ueno, Y., Yoshida, R., Kishi-Kaboshi, M., Matsushita, A., Jiang, C.-J., Goto, S., Takahashi, A., Hirochika, H. and Takatsuji, H. 2015. Abiotic stresses antagonize the rice defence pathway through the tyrosine-dephosphorylation of OsMPK6.
PLoS Pathog. 11:e1005231.
Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R. K., Kumar, V., Verma, R., Upadhyay, R. G., Pandey, M. and Sharma, S. 2017. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects.
Front. Plant Sci. 8:161.
Wasilewska, A., Vlad, F., Sirichandra, C., Redko, Y., Jammes, F., Valon, C., Frei dit Frey, N. and Leung, J. 2008. An update on abscisic acid signaling in plants and more.
Mol. Plant. 1:198-217.
Wu, P.-C., Chen, C.-W., Choo, C. Y. L., Chen, Y.-K., Yago, J. I. and Chung, K.-R. 2020. Biotin biosynthesis affected by the NADPH oxidase and lipid metabolism is required for growth, sporulation and infectivity in the citrus fungal pathogen
Alternaria alternata.
Microbiol. Res. 241:126566.
Yasuda, M., Ishikawa, A., Jikumaru, Y., Seki, M., Umezawa, T., Asami, T., Maruyama-Nakashita, A., Kudo, T., Shinozaki, K., Yoshida, S. and Nakashita, H. 2008. Antagonistic interaction between systemic acquired resistance and the abscisic acidmediated abiotic stress response in
Arabidopsis.
Plant Cell. 20:1678-1692.
Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2010. AREB1, AREB2, and
ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation.
Plant J. 61:672-685.