Alcock, B. P., Raphenya, A. R., Lau, T., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A. V., Cheng, A. A., Liu, S., Min, S. Y., Miroshnichenko, A., Tran, H. K., Werfalli, R. E., Nasir, J. A., Oloni, M., Speicher, D. J., Florescu, A., Singh, B., Faltyn, M., Hernandez-Koutoucheva, A., Sharma, A. N., Bordeleau, E., Pawlowski, A. C., Zubyk, HL., Dooley, D., Griffiths, E., Maguire, F., Winsor, G. L., Beiko, R. G., Brinkman, F. S. L., Hsiao, W. W. L., Domselaar, G. V. and McArthur, A. G. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database.
Nucleic Acids Res. 48:D517-D525.
Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G. and Nielsen, H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks.
Nat. Biotechnol. 37:420-423.
Arndt, D., Grant, J. R., Marcu, A., Sajed, T., Pon, A., Liang, Y. and Wishart, D. S. 2016. PHASTER: a better, faster version of the PHAST phage search tool.
Nucleic Acids Res. 44:W16-W21.
Auch, A. F., Klenk, H.-P. and Göker, M. 2010. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs.
Stand Genomic Sci. 2:142-148.
Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, EM., Kubal, M., Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G. D., Reich, C., Stevens, R., Vassieva, O., Vonstein, V., Wilke, A. and Zagnitko, O. 2008. The RAST Server: rapid annotations using subsystems technology.
BMC Genomics 9:75.
Benson, G. 1999. Tandem repeats finder: a program to analyze DNA sequences.
Nucleic Acids Res. 27:573-580.
Carattoli, A., Zankari, E., García-Fernández, A., Voldby Larsen, M., Lund, O., Villa, L., Møller Aarestrup, F. and Hasman, H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing.
Antimicrob Agents Chemother 58:3895-3903.
Charkowski, A. O. 2018. The changing face of bacterial soft-rot diseases.
Annu. Rev. Phytopathol. 56:269-288.
Coburn, B., Sekirov, I. and Finlay, B. B. 2007. Type III secretion systems and disease.
Clin Microbiol. Rev 20:535-549.
Couvin, D., Bernheim, A., Toffano-Nioche, C., Touchon, M., Michalik, J., Néron, B., Rocha, E. P. C., Vergnaud, G., Gautheret, D. and Pourcel, C. 2018. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins.
Nucleic Acids Res. 46:W246-W251.
Crépin, A., Barbey, C., Beury-Cirou, A., Hélias, V., Taupin, L., Reverchon, S., Nasser, W., Faure, D., Dufour, A., Orange, N., Feuilloley, M., Heurlier, K., Burini, J.-F. and Latour, X. 2012. Quorum sensing signaling molecules produced by reference and emerging soft-rot bacteria (
Dickeya and
Pectobacterium spp.).
PLoS ONE 7:e35176.
Darling, A. C. E., Mau, B., Blattner, F. R. and Perna, N. T. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements.
Genome Res. 14:1394-1403.
Davidsson, P. R., Kariola, T., Niemi, O. and Palva, E. T. 2013. Pathogenicity of and plant immunity to soft rot pectobacteria.
Front. Plant Sci. 4:191.
Dees, M. W., Lysøe, E., Rossmann, S., Perminow, J. and Brurberg, M. B. 2017.
Pectobacterium polaris sp. nov., isolated from potato (
Solanum tuberosum).
Int. J. Syst. Evol. Microbiol. 67:5222-5229.
Filloux, A. 2004. The underlying mechanisms of type II protein secretion.
Biochim Biophys Acta 1694:163-179.
Gallique, M., Decoin, V., Barbey, C., Rosay, T., Feuilloley, M. G. J., Orange, N. and Merieau, A. 2017. Contribution of the
Pseudomonas fluorescens MFE01 type VI secretion system to biofilm formation.
PLoS ONE 12:e0170770.
Garg, A. and Gupta, D. 2008. VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens.
BMC Bioinformatics 9:62.
Hogan, C. S., Mole, B. M., Grant, S. R., Willis, D. K. and Charkowski, A. O. 2013. The type III secreted effector DspE is required early in
Solanum tuberosum leaf infection by
Pectobacterium carotovorum to cause cell death, and requires Wx
(3-6)D/E motifs.
PLoS ONE 8:e65534.
Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., Mende, D. R., Letunic, I., Rattei, T., Jensen, L. J., von Mering, C. and Bork, P. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses.
Nucleic Acids Res. 47:D309-D314.
Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. 2004. The KEGG resource for deciphering the genome.
Nucleic Acids Res. 32:D277-D280.
Kim, H.-S., Ma, B., Perna, N. T. and Charkowski, A. O. 2009. Phylogeny and virulence of naturally occurring type III secretion system-deficient
Pectobacterium strains.
Appl. Environ. Microbiol. 75:4593-4549.
Kim, H.-S., Thammarat, P., Lommel, S. A., Hogan, C. S. and Charkowski, A. O. 2011.
Pectobacterium carotovorum elicits plant cell death with DspE/F but the
P. carotovorum DspE does not suppress callose or induce expression of plant genes early in plant-microbe interactions.
Mol. Plant.-Microbe. Interact. 24:773-786.
Kõiv, V., Andresen, L., Broberg, M., Frolova, J., Somervuo, P., Auvinen, P., Pirhonen, M., Tenson, T. and Mäe, A. 2013. Lack of RsmA-mediated control results in constant hypervirulence, cell elongation, and hyperflagellation in
Pectobacterium wasabiae.
PLoS ONE 8:e54248.
Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E. L. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
J. Mol. Biol. 305:567-580.
Lee, D. H., Lim, J.-A., Lee, J., Roh, E., Jung, K., Choi, M., Oh, C., Ryu, S., Yun, J. and Heu, S. 2013. Characterization of genes required for the pathogenicity of
Pectobacterium carotovorum subsp.
carotovorum Pcc21 in Chinese cabbage.
Microbiology 159:1487-1496.
Li, L., Yuan, L., Shi, Y., Xie, X., Chai, A., Wang, Q. and Li, B. 2019. Comparative genomic analysis of
Pectobacterium carotovorum subsp.
brasiliense SX309 provides novel insights into its genetic and phenotypic features.
BMC Genomics 20:486.
Li, X., Ma, Y., Liang, S., Tian, Y., Yin, S., Xie, S. and Xie, H. 2018. Comparative genomics of 84
Pectobacterium genomes reveals the variations related to a pathogenic lifestyle.
BMC Genomics 19:889.
Mashavha, M. L. 2013. Characterisation of Pectobacterium carotovorum subsp. brasiliense isolates causing blackleg and soft rot diseases of potato in South Africa. MS thesis. University of Pretoria, Pretoria, South Africa.
Mole, B., Habibi, S., Dangl, J. L. and Grant, S. R. 2010. Gluconate metabolism is required for virulence of the soft-rot pathogen
Pectobacterium carotovorum.
Mol. Plant.-Microbe. Interact. 23:1335-1344.
Nivaskumar, M. and Francetic, O. 2014. Type II secretion system: a magic beanstalk or a protein escalator.
Biochim Biophys Acta 1843:1568-1577.
Nykyri, J., Niemi, O., Koskinen, P., Nokso-Koivisto, J., Pasanen, M., Broberg, M., Plyusnin, I., Törönen, P., Holm, L., Pirhonen, M. and Palva, E. T. 2012. Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen
Pectobacterium wasabiae SCC3193.
PLoS Pathog. 8:e1003013.
Oh, C.-S. and Beer, S. V. 2005. Molecular genetics of
Erwinia amylovora involved in the development of fire blight.
FEMS Microbiol. Lett. 253:185-192.
Panda, P., Lu, A., Armstrong, K. F. and Pitman, A. R. 2015. Draft genome sequence for ICMP 5702, the type strain of
Pectobacterium carotovorum subsp.
carotovorum that causes soft rot disease on potato.
Genome Announc. 3:e00875-15.
Petrova, O., Gorshkov, V., Sergeeva, I., Daminova, A., Ageeva, M. and Gogolev, Y. 2016. Alternative scenarios of starvation-induced adaptation in
Pectobacterium atrosepticum.
Res Microbiol. 167:254-261.
Portier, P., Pédron, J., Taghouti, G., Fischer-Le Saux, M., Caullireau, E., Bertrand, C., Laurent, A., Chawki, K., Oulgazi, S., Moumni, M., Andrivon, D., Dutrieux, C., Faure, D., Hélias, V. and Barny, M.-A. 2019. Elevation of
Pectobacterium carotovorum subsp.
odoriferum to species level as
Pectobacterium odoriferum sp. nov., proposal of
Pectobacterium brasiliense sp. nov. and
Pectobacterium actinidiae sp. nov., emended description of
Pectobacterium carotovorum and description of
Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants.
Int. J. Syst. Evol. Microbiol. 69:3207-3216.
Rodriguez, R. L. M. and Konstantinidis, K. T. 2016. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr 4:e1900v1.
Salzberg, S. L. 2019. Next-generation genome annotation: we still struggle to get it right.
Genome Biol. 20:92.
Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.
Bioinformatics 30:1312-1313.
Törönen, P., Medlar, A. and Holm, L. 2018. PANNZER2: a rapid functional annotation web server.
Nucleic Acids Res. 46:W84-W88.
Toth, I. K., Bell, K. S., Holeva, M. C. and Birch, P. R. J. 2003. Soft rot erwiniae: from genes to genomes.
Mol. Plant Pathol. 4:17-30.
Vercoe, RB., Chang, J. T., Dy, R. L., Taylor, C., Gristwood, T., Clulow, J. S., Richter, C., Przybilski, R., Pitman, A. R. and Fineran, P. C. 2013. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.
PLoS Genet. 9:e1003454.
Waleron, M., Misztak, A., Waleron, M., Franczuk, M., Wielgomas, B. and Waleron, K. 2018. Transfer of
Pectobacterium carotovorum subsp.
carotovorum strains isolated from potatoes grown at high altitudes to
Pectobacterium peruviense sp. nov.
Syst. Appl. Microbiol. 41:85-93.
Wang, J., Li, J., Hou, Y., Dai, W., Xie, R., Marquez-Lago, T. T., Leier, A., Zhou, T., Torres, V., Hay, I., Stubenrauch, C., Zhang, Y., Song, J. and Lithgow, T. 2021. BastionHub: a universal platform for integrating and analyzing substrates secreted by Gram-negative bacteria.
Nucleic Acids Res. 49:D651-D659.
Wang, Y., Coleman-Derr, D., Chen, G. and Gu, Y. Q. 2015. OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species.
Nucleic Acids Res. 43:W78-W84.
Wick, R. R., Judd, L. M., Gorrie, C. L. and Holt, K. E. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads.
PLoS Comput Biol. 13:e1005595.
Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P. K., Xu, Y. and Yin, Y. 2018. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation.
Nucleic Acids Res. 46:W95-W101.