Ali, O., Ramsubhag, A. and Jayaraman, J. 2021. Biostimulant properties of seaweed extracts in plants: implications towards sustainable crop production.
Plants 10:531.
Asari, S., Matzén, S., Petersen, M. A., Bejai, S. and Meijer, J. 2016. Multiple effects of
Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.
FEMS Microbiol. Ecol. 92:fiw070.
Barchenger, D. W. and Khoury, C. K. 2022. A global strategy for the conservation and use of Capsicum genetic resources. Global Crop Diversity Trust, Bonn, Germany. pp. 77.
Borad, V. and Sriram, S. 2008. Pathogenesis-related proteins for the plant protection. Asian J. Exp. Sci. 22:189-196.
Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C. and Mahillon, J. 2019. Overview of the antimicrobial compounds produced by members of the
Bacillus subtilis group.
Front. Microbiol. 10:302.
Chaves-López, C., Serio, A., Gianotti, A., Sacchetti, G., Ndagijimana, M., Ciccarone, C., Stellarini, A., Corsetti, A. and Paparella, A. 2015. Diversity of food-borne
Bacillus volatile compounds and influence on fungal growth.
J. Appl. Microbiol. 119:487-499.
Cherif-Silini, H., Silini, A., Yahiaoui, B., Ouzari, I. and Boudabous, A. 2016. Phylogenetic and plant-growth-promoting characteristics of
Bacillus isolated from the wheat rhizosphere.
Ann. Microbiol. 66:1087-1097.
Clemente, M., Corigliano, M. G., Pariani, S. A., Sánchez-López, E. F., Sander, V. A. and Ramos-Duarte, V. A. 2019. Plant serine protease inhibitors: biotechnology application in agriculture and molecular farming.
Int. J. Mol. Sci. 20:1345.
Connolly, M. A., Clausen, P. A. and Lazar, J. G. 2006. Preparation of RNA from plant tissue using TRIzol.
CSH Protoc. 2006:pdb.prot4105.
Du Jardin, P. 2015. Plant biostimulants: definition, concept, main categories and regulation.
Sci. Hortic. 196:3-14.
Fei, H., Crouse, M., Papadopoulos, Y. and Vessey, J. K. 2017. Enhancing the productivity of hybrid poplar (Populus × hybrid) and switchgrass (
Panicum virgatum L.) by the application of beneficial soil microbes and a seaweed extract.
Biomass Bioenergy 107:122-134.
Fincher, G. B. 1989. Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains.
Annu. Rev. Plant Biol. 40:305-346.
Franche, C., Lindström, K. and Elmerich, C. 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants.
Plant Soil 321:35-59.
Goswami, D., Dhandhukia, P., Patel, P. and Thakker, J. N. 2014. Screening of PGPR from saline desert of Kutch: growth promotion in
Arachis hypogea by
Bacillus licheniformis A2.
Microbiol. Res. 169:66-75.
Haidar, R., Roudet, J., Bonnard, O., Dufour, M. C., Corio-Costet, M. F., Fert, M., Gautier, T., Deschamps, A. and Fermaud, M. 2016. Screening and modes of action of antagonistic bacteria to control the fungal pathogen
Phaeomoniella chlamydospora involved in grapevine trunk diseases.
Microbiol. Res. 192:172-184.
Han, J.-H., Kim, M.-J. and Kim, K. S. 2015a. Control of Colletotrichum acutatum and plant growth promotion of pepper by antagonistic microorganisms. Korean J. Mycol. 43:253-259.
Han, J.-H., Shim, H., Shin, J.-H. and Kim, K. S. 2015b. Antagonistic activities of
Bacillus spp. strains isolated from tidal flat sediment towards anthracnose pathogens
Colletotrichum acutatum and
C. gloeosporioides in South Korea.
Plant Pathol. J. 31:165-175.
Hazarika, D. J., Goswami, G., Gautom, T., Parveen, A., Das, P., Barooah, M. and Boro, R. C. 2019. Lipopeptide mediated biocontrol activity of endophytic
Bacillus subtilis against fungal phytopathogens.
BMC Microbiol. 19:71.
Hong, J. K., Yang, H. J., Jung, H., Yoon, D. J., Sang, M. K. and Jeun, Y.-C. 2015. Application of volatile antifungal plant essential oils for controlling pepper fruit anthracnose by
Colletotrichum gloeosporioides.
Plant Pathol. J. 31:269-277.
Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J. and Prithiviraj, B. 2009. Seaweed extracts as biostimulants of plant growth and development.
J. Plant Growth Regul. 28:386-399.
Kloepper, J. W., Reddy, M. S., Rodríguez-Kabana, R., Kenney, D. S., Kokalis-Burelle, N. and Martinez-Ochoa, N. 2004. Application for rhizobacteria in transplant production and yield enhancement.
Acta Hortic. 631:219-229.
Kwon, H.-T., Lee, Y., Kim, J., Balaraju, K., Kim, H. T. and Jeon, Y. 2022. Identification and characterization of
Bacillus tequilensis GYUN-300: an antagonistic bacterium against red pepper anthracnose caused by
Colletotrichum acutatum in Korea.
Front. Microbiol. 13:826827.
Meena, R. S., Kumar, S., Datta, R., Lal, R., Vijayakumar, V., Brtnicky, M., Sharma, M. P., Yadav, G. S., Jhariya, M. K., Jangir, C. K., Pathan, S. I., Dokulilova, T., Pecina, V. and Marfo, T. D. 2020. Impact of agrochemicals on soil microbiota and management: a review.
Land 9:34.
Ngalimat, M. S., Yahaya, R. S. R., Baharudin, MMA-A, Yaminudin, S. M., Karim, M., Ahmad, S. A. and Sabri, S. 2021. A review on the biotechnological applications of the operational group
Bacillus amyloliquefaciens.
Microorganisms 9:614.
Ons, L., Bylemans, D., Thevissen, K. and Cammue, B. P. A. 2020. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control.
Microorganisms 8:1930.
Pal, A. K., Mandal, S. and Sengupta, C. 2019. Exploitation of IAA producing PGPR on mustard (
Brassica nigra L.) seedling growth under cadmium stress condition in comparison with exogenous IAA application.
Plant Sci. Today 6:22-30.
Palazzini, J. M., Dunlap, C. A., Bowman, M. J. and Chulze, S. N. 2016.
Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: genome sequencing and secondary metabolite cluster profiles.
Microbiol. Res. 192:30-36.
Park, K. S. and Kim, C. H. 1992. Identification, distribution and etiological characteristics of anthracnose fungi of red pepper in Korea. Korean J. Plant Pathol. 8:61-69.
Raaijmakers, J. M. and Mazzola, M. 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria.
Annu. Rev. Phytopathol. 50:403-424.
Rao, X., Huang, X., Zhou, Z. and Lin, X. 2013. An improvement of the 2
−ΔΔCT method for quantitative real-time polymerase chain reaction data analysis.
Biostat. Bioinforma Biomath. 3:71-85.
Ribeiro, C. M. and Cardoso, E. J. B. N. 2012. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (
Araucaria angustifolia).
Microbiol. Res. 167:69-78.
Ro, N., Haile, M., Hur, O., Ko, H.-C., Yi, J.-Y., Woo, H.-J., Choi, Y.-M., Rhee, J., Lee, Y.-J., Kim, D.-A., Do, J.-W., Kim, G. W., Kwon, J.-K. and Kang, B.-C. 2023. Genome-wide association study of resistance to anthracnose in pepper (
Capsicum chinense) germplasm.
BMC Plant Biol. 23:389.
Ro, N.-Y., Sebastin, R., Hur, O.-S., Cho, G.-T., Geum, B., Lee, Y.-J. and Kang, B.-C. 2021. Evaluation of anthracnose resistance in pepper (
Capsicum spp.) genetic resources.
Horticulturae 7:460.
Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores.
Anal. Biochem. 160:47-56.
Shin, J.-H., Park, B.-S., Kim, H.-Y., Lee, K.-H. and Kim, K. S. 2021. Antagonistic and plant growth-promoting effects of
Bacillus velezensis BS1 isolated from rhizosphere soil in a pepper field.
Plant Pathol. J. 37:307-314.
Singh, D., Ghosh, P., Kumar, J. and Kumar, A. 2019. Plant growth-promoting rhizobacteria (PGPRs): functions and benefits. In:
Microbial interventions in agriculture environment. Vol 2. Rhizosphere, microbiome and agro-ecology, eds. by D. P. Singh, V. K. Gupta and R. Prabha, pp. 205-227. Springer, Singapore.
Son, J.-S., Sumayo, M., Hwang, Y.-J., Kim, B.-S. and Ghim, S.-Y. 2014. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper.
Appl. Soil Ecol. 73:1-8.
Suprapta, D. N. 2022. Biocontrol of anthracnose disease on chili pepper using a formulation containing
Paenibacillus polymyxa C1.
Front. Sustain. Food Syst. 5:782425.
Van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria.
Eur. J. Plant Pathol. 119:243-254.
Van Loon, L. C., Bakker, P. A. and Pieterse, C. M. 1998. Systemic resistance induced by rhizosphere bacteria.
Annu. Rev. Phytopathol. 36:453-483.
Yashaswini, M. S., Nysanth, N. S. and Anith, K. N. 2021. Endospore-forming bacterial endophytes from
Amaranthus spp. improve plant growth and suppress leaf blight (
Rhizoctonia solani Kühn) disease of
Amaranthus tricolor L.
Rhizosphere 19:100387.
Yazdani, M., Bahmanyar, M. A., Pirdashti, H. and Esmaili, M. A. 2009. Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). World Acad. Sci. Eng. Technol. 3:50-52.
Zaidi, A., Khan, M. S., Ahemad, M. and Oves, M. 2009. Plant growth promotion by phosphate solubilizing bacteria.
Acta Microbiol. Immunol. Hung. 56:263-284.
Zhou, D., Huang, X.-F., Chaparro, J. M., Badri, D. V., Manter, D. K., Vivanco, J. M. and Guo, J. 2016. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects.
Plant Soil 401:259-272.
Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571-586.