Aoki, T., Ward, T.J., Kistler, H.C. and O’Donnell, K. 2012. Systematics, phylogeny and trichothecene mycotoxin potential of
Fusarium head blight cereal pathogens.
Mycotoxins. 62:91-102.
Bowden, R.L. and Leslie, J.F. 1999. Sexual recombination in
Gibberella zeae.
Phytopathology. 89:182-188.
Chun, J.H. 1963. Epidemiological survey of human mycotoxicosis caused by scabby cereals. Research report on wheat and barley scab. Republic of Korea. 385-507 Ministry of Agriculture and Forestry, Seoul, Korea. (in Korean).
Chung, H.S. 1975. Cereal scab causing mycotoxicoses in Korea and present status of mycotoxin researches. Korean J Mycol. 3:31-36.
Del Ponte, E.M., Spolti, P., Ward, T.J., Gomes, L.B., Nicolli, C.P., Kuhnem, P.R., Silva, C.N. and Tessmann, D.J. 2015. Regional and field-specific factors affect the composition of fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil.
Phytopathology. 105:246-254.
Desjardins, A.E. 2006. Fusarium mycotoxins: chemistry, genetics and biology. American Phytopathological Society, St. Paul, MN, USA. 268.
Desjardins, A.E. and Proctor, R.H. 2011. Genetic diversity and trichothecene chemotypes of the
Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage.
Fungal Biol. 115:38-48.
Gale, L.R., Harrison, S.A., Ward, T.J., O’Donnell, K., Milus, E.A., Gale, S.W. and Kistler, H.C. 2011. Nivalenol-type populations of
Fusarium graminearum and
F. asiaticum are prevalent on wheat in southern Louisiana.
Phytopathology. 101:124-134.
Gomes, L.B., Ward, T.J., Badiale-Furlong, E. and Del Ponte, E.M. 2015. Species composition, toxigenic potential and pathogenicity of
Fusarium graminearum species complex isolates from southern Brazilian rice.
Plant Pathol. 64:980-987.
Goswami, R.S. and Kistler, H.C. 2004. Heading for disaster:
Fusarium graminearum on cereal crops.
Mol Plant Pathol. 5:515-525.
Groth, J.V., Ozmon, E.A. and Busch, R.H. 1999. Repeatability and relationship of incidence and severity measures of scab of wheat caused by
Fusarium graminearum in inoculated nurseries.
Plant Dis. 83:1033-1038.
Joo, H.J., Kim, H.-Y., Kim, L.-H., Lee, S., Ryu, J.-G. and Lee, T. 2015. A
Brevibacillus sp. antagonistic to mycotoxigenic Fusarium spp.
Biol Control. 87:64-70.
Karugia, G.W., Suga, H., Gale, L.R., Nakajima, T., Tomimura, K. and Hyakumachi, M. 2009. Population structure of the
Fusarium graminearum species complex from a single Japanese wheat field sampled in two consecutive years.
Plant Dis. 93:170-174.
Lee, J., Chang, I.Y., Kim, H., Yun, S.H., Leslie, J.F. and Lee, Y.W. 2009. Genetic diversity and fitness of
Fusarium graminearum populations from rice in Korea.
Appl Environ Microbiol. 75:3289-3295.
Lee, S.-H., Lee, J.-K., Nam, Y.-J., Lee, S.-H., Ryu, J.-G. and Lee, T. 2010. Population structure of
Fusarium graminearum from maize and rice in 2009 in Korea.
Plant Pathol J. 26:321-327.
Lee, S., Lee, T., Kim, M., Yu, O., Im, H. and Ryu, J.-G. 2013 Survey on contamination of
Fusarium mycotoxins in 2011-harvested rice and its by-products from rice processing complexes in Korea.
Res Plant Dis. 19:259-264 (in Korean).
Lee, T., Han, Y.-K., Kim, K.-H., Yun, S.-H. and Lee, Y.-W. 2002.
Tri13 and
Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of
Gibberella zeae.
Appl Environ Microbiol. 68:2148-2154.
Lee, T., Paek, J.-S., Lee, K.A., Lee, S., Choi, J.-H., Ham, H., Hong, S.K. and Ryu, J.-G. 2016. Occurrence of toxigenic
Fusarium vorosii among small grain cereals in Korea.
Plant Pathol J. 32:407-413.
Lee, U.S., Jang, H.S., Tanaka, T., Hasegawa, A., Oh, Y.J. and Ueno, Y. 1985. The coexistence of the
Fusarium mycotoxins nivalenol, deoxynivalenol and zearalenone in Korean cereals harvested in 1983.
Food Addit Contam. 2:185-192.
Leslie, J.F. and Summerell, B.A. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, IA, USA. 388.
Liu, Y.-Y., Sun, H.-Y., Li, W., Xia, Y.-L., Deng, Y.-Y., Zhang, A.-X. and Chen, H.-G. 2017. Fitness of three chemotypes of
Fusarium graminearum species complex in major winter wheat-producing areas of China.
PLoS ONE. 12:e0174040
Maier, F.J., Miedaner, T., Hadeler, B., Felk, A., Salomon, S., Lemmens, M., Kassner, H. and Schäfer, W. 2006. Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence.
Mol Plant Pathol. 7:449-461.
Nash, S.M. and Snyder, W.C. 1962. Quantitative estimations by plate counts of propagules of the Bean root rot Fusarium in field soils. Phytopathology. 52:567-572.
Nicolli, C.P., Machado, F.J., Spolti, P. and Del Ponte, E.M. 2018. Fitness traits of deoxynivalenol and nivalenol-producing
Fusarium graminearum species complex strains from wheat.
Plant Dis. 102:1341-1347.
O’Donnell, K., Ward, T.J., Geiser, D.M., Kistler, H.C. and Aoki, T. 2004. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the
Fusarium graminearum clade.
Fungal Genet Biol. 41:600-623.
Proctor, R.H., Desjardins, A.E., McCormick, S.P., Plattner, R.D., Alexander, N.J. and Brown, D.W. 2002. Genetic analysis of the role of trichothecene and fumonisin mycotoxins in the virulence of
Fusarium.
Eur J Plant Pathol. 108:691-698.
Puri, K.D., Saucedo, E.S. and Zhong, S. 2012. Molecular characterization of
Fusarium head blight pathogens sampled from a naturally infected disease nursery used for wheat breeding programs in China.
Plant Dis. 96:1280-1285.
Qui, J., Xu, J. and Shi, J. 2014. Molecular characterization of the
Fusarium graminearum species complex in Eastern China.
Eur J Plant Pathol. 139:811-823.
Shin, S., Son, J.-H., Park, J.-C., Kim, K.-H., Yoon, Y., Cheong, Y.-K., Kim, K.-H., Hyun, J.-N., Park, C.S., Dill-Macky, R. and Kang, C.-S. 2018. Comparative pathogenicity of
Fusarium graminearum isolates from wheat kernels in Korea.
Plant Pathol J. 34:347-355.
Starkey, D.E., Ward, T.J., Aoki, T., Gale, L.R., Kistler, H.C., Geiser, D.M., Suga, H., Tóth, B., Varga, J. and O’Donnell, K. 2007. Global molecular surveillance reveals novel
Fusarium head blight species and trichothecene toxin diversity.
Fungal Genet Biol. 44:1191-1204.
Suga, H., Karugia, G.W., Ward, T., Gale, L.R., Tomimura, K., Nakajima, T., Miyasaka, A., Koizumi, S., Kageyama, K. and Hyakumachi, M. 2008. Molecular characterization of the
Fusarium graminearum species complex in Japan.
Phytopathology. 98:159-166.
Tančić, S., Stanković, S., Lević, J. and Krnjaja, V. 2015. Correlation of deoxynivalenol and zearalenone production by
Fusarium species originating from wheat and maize grain.
Pestic Phytomed. 30:99-105.
van der Lee, T., Zhang, H., Diepeningen, A. and Waalwijk, C. 2015. Biogeography of
Fusarium graminearum species complex and chemotypes: a review.
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 32:453-460.
Ward, T.J., Clear, R.M., Rooney, A.P., O’Donnell, K., Gaba, D., Patrick, S., Starkey, D.E., Gilbert, J., Geiser, D.M. and Nowicki, T.W. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic
Fusarium graminearum in North America.
Fungal Genet Biol. 45:473-484.
Yli-Mattila, T. 2010. Ecology and evolution of toxigenic Fusarium species in cereals in northern Europe and Asia. J Plant Pathol. 92:7-18.
Zhang, H., van der Lee, T., Waalwijk, C., Chen, W., Xu, J., Xu, J., Zhang, Y. and Feng, J. 2012. Population analysis of the
Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates.
PLoS ONE. 7:e31722
Zhang, H., Zhang, Z., van der Lee, T., Chen, W.Q., Xu, J., Xu, J.S., Yang, L., Yu, D., Waalwijk, C. and Feng, J. 2010. Population genetic analyses of
Fusarium asiaticum populations from barley suggest a recent shift favoring 3ADON producers in southern China.
Phytopathology. 100:328-336.