Agarkova, I.V., Lambrecht, P.A., Vidaver, A.K. and Harveson, R.M. 2012. Genetic diversity among
Curtobacterium flaccumfaciens pv.
flaccumfaciens populations in the American high plains.
Can. J. Microbiol 58:788-801.
ASTM International 2017 ASTM E2799-17: standard test method for testing disinfectant efficacy against
Pseudomonas aeruginosa biofilm using the MBEC assay URL
https://www.astm.org/e2799-17.html
. 10 April 2022.
Bigger, J.W. 1944. The bactericidal action of penicillin on
Staphylococcus pyogenes.
Ir. J. Med. Sci. 19:553-568.
Botti-Marino, M. 2017. Epiphytic survival and biofilm formation of the Goss’s wilt pathogen Clavibacter michiganensis subsp. nebraskensis
. Ph.D. thesis. Michigan State University, East Lansing, MI, USA.
Bozzola, J.J. and Russell, L.D. 1992. Electron microscopy: principles and techniques for biologists. Jones and Bartlett Publishers, Boston, MA, USA. pp. 670.
Bragg, P.D. and Rainnie, D.J. 1974. The effect of silver ions on the respiratory chain of
Escherichia coli
.
Can. J. Microbiol. 20:883-889.
Bridier, A., Briandet, R., Thomas, V. and Dubois-Brissonnet, F. 2011. Resistance of bacterial biofilms to disinfectants: a review.
Biofouling 27:1017-1032.
Castiblanco, L.F. and Sundin, G.W. 2016. New insights on molecular regulation of biofilm formation in plant-associated bacteria.
J. Integr. Plant Biol. 58:362-372.
Conner, R.L., Balasubramanian, P., Erickson, R.S., Huang, H.C. and Mündel, H.H. 2008. Bacterial wilt resistance in kidney beans.
Can. J. Plant Sci 88:1109-1113.
De Beer, D., Stoodley, P. and Lewandowski, Z. 1994. Liquid flow in heterogeneous biofilms.
Biotechnol. Bioeng. 44:636-641.
De Beer, D., Stoodley, P. and Lewandowski, Z. 1996. Liquid flow and mass transport in heterogeneous biofilms.
Water Res. 30:2761-2765.
Demirci, H., Murphy, F., Murphy, E., Gregory, S.T., Dahlberg, A.E. and Jogl, G. 2013. A structural basis for streptomycin-induced misreading of the genetic code.
Nat. Commun 4:1355.
Gilbert, P. and McBain, A.J. 2001. Biofilms: their impact on heath and their recalcitrance toward biocides.
Am. J. Infect. Control 29:252-255.
Harding, M.W. and Daniels, G.C. 2017.
In vitro assessment of biofilm formation by soil- and plant-associated microorganisms. In:
Biofilms in plant and soil health, eds. by I. Ahmad and F.M. Husain, pp. 253-273. John Wiley & Sons, Ltd, West Sussex, UK.
Harding, M.W., Howard, R.J., Daniels, G.D., Mobbs, S.L., Lisowski, S.L.I., Allan, N.D., Omar, A. and Olson, M.E. 2011. A multi-well plate method for rapid growth, characterization and biocide sensitivity testing of microbial biofilms on various surface materials. In: Science against microbial pathogens: communicating current research and technological advances, eds. by A. Méndez-Vilas, pp. 872-877. Formatex Research Centre, Badajoz, Spain.
Harding, M.W., Marques, L.L.R., Howard, R.J. and Olson, M.E. 2010. Biofilm morphologies of plant pathogenic fungi. Am. J. Plant Sci. Biotechnol. 4:43-47.
Harding, M., Nadworny, P., Buziak, B., Omar, A., Daniels, G. and Feng, J. 2019. Improved methods for treatment of phytopathogenic biofilms: metallic compounds as anti-bacterial coatings and fungicide tank-mix partners.
Molecules 24:2312.
Harrison, J.J., Stremick, C.A., Turner, R.J., Allan, N.D., Olson, M.E. and Ceri, H. 2010. Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening.
Nat. Protoc. 5:1236-1254.
Harveson, R.M. and Schwartz, H.F. 2007. Bacterial diseases of dry edible beans in the Central High Plains.
Plant Health Prog. 8:35.
Harveson, R.M., Schwartz, H.F., Urrea, C.A. and Yonts, C.D. 2015. Bacterial wilt of dry-edible beans in the central high plains of the US: past, present, and future.
Plant Dis. 99:1665-1677.
Howard, R.J., Harding, M.W., Daniels, G.C., Mobbs, S.L., Lisowski, S.L.I. and De Boer, S.H. 2015. Efficacy of agricultural disinfectants on biofilms of the bacterial ring rot pathogen,
Clavibacter michiganensis subsp
sepedonicus
.
Can. J. Plant Pathol 37:273-284.
Hsieh, T.F., Huang, H.C., Mündel, H.-H., Conner, R.L., Erickson, R.S. and Balasubramanian, P.M. 2005. Resistance of common bean (
Phaseolus vulgaris) to bacterial wilt caused by
Curtobacterium flaccumfaciens pv
flaccumfaciens
.
J. Phytopathol. 153:245-249.
Huang, H.C., Erickson, R.S., Balasubramanian, P.M., Hsieh, T.F. and Conner, R.L. 2009. Resurgence of bacterial wilt of common bean in North America.
Can. J. Plant Pathol. 31:290-300.
Huang, H.C., Erickson, R.S. and Hsieh, T.F. 2007. Control of bacterial wilt of bean (
Curtobacterium flaccumfaciens pv.
flaccumfaciens) by seed treatment with
Rhizobium leguminosarum
.
Crop Prot. 26:1055-1061.
Koczan, J.M., McGrath, M.J., Zhao, Y. and Sundin, G.W. 2009. Contribution of
Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity.
Phytopathology 99:1237-1244.
Koutsoudis, M.D., Tsaltas, D., Minogue, T.D. and von Bodman, S.B. 2006. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in
Pantoea stewartii subspecies
stewartii
.
Proc. Natl. Acad. Sci. U. S. A. 103:5983-5988.
Marques, L.L.R., Ceri, H., Manfio, G.P., Reid, D.M. and Olson, M.E. 2002. Characterization of biofilm formation by
Xylella fastidiosa in vitro
.
Plant Dis. 86:633-638.
Miyaue, S., Suzuki, E., Komiyama, Y., Kondo, Y., Morikawa, M. and Maeda, S. 2018. Bacterial memory of persisters: bacterial persister cells can retain their phenotype for days or weeks after withdrawal from colony-biofilm culture.
Front. Microbiol. 9:1396.
Modak, S.M. and Fox, C.L. Jr 1973. Binding of silver sulfadiazine to the cellular components of
Pseudomonas aeruginosa
.
Biochem. Pharmacol 22:2391-2404.
Mori, Y., Inoue, K., Ikeda, K., Nakayashiki, H., Higashimoto, C., Ohnishi, K., Kiba, A. and Hikichi, Y. 2016. The vascular plant-pathogenic bacterium
Ralstonia solanacearum produces biofilms required for its virulence on the surfaces of tomato cells adjacent to intercellular spaces.
Mol. Plant Pathol. 17:890-902.
Nadworny, P., Omotoso, O. and Zheng, Z. 2015. Comparison of oxysilver nitrate and oxysilver bisulfate, Part I: Synthesis and physicochemical properties.
Polyhedron 99:204-215.
Osdaghi, E., Taghavi, S.M., Hamzehzarghani, H., Fazliarab, A., Harveson, R.M. and Lamichhane, J.R. 2016. Occurrence and characterization of a new red-pigmented variant of
Curtobacterium flaccumfaciens, the causal agent of bacterial wilt of edible dry beans in Iran.
Eur. J. Plant Pathol. 146:129-145.
Osdaghi, E., Young, A.J. and Harveson, R.M. 2020. Bacterial wilt of dry beans caused by
Curtobacterium flaccumfaciens pv.
flaccumfaciens: a new threat from an old enemy.
Mol. Plant Pathol. 21:605-621.
Padmavathi, A.R., Bakkiyaraj, D. and Pandian, S.K. 2017. Biochemical and molecular mechanisms in biofilm formation of plant associated bacteria. In:
Biofilms in plant and soil health, eds. by I. Ahmad and F.M. Husain, pp. 195-214. John Wiley & Sons, Ltd, West Sussex, UK.
Picioreanu, C., van Loosdrecht, M.C.M. and Heijnen, J.J. 2000. Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study.
Biotechnol. Bioeng. 69:504-515.
Ramey, B.E., Koutsoudis, M., von Bodman, S.B. and Fuqua, C. 2004. Biofilm formation in plant-microbe associations.
Curr. Opin. Microbiol 7:602-609.
Reichhardt, C. and Parsek, M.R. 2019. Confocal laser scanning microscopy for analysis of
Pseudomonas aeruginosa biofilm architecture and matrix localization.
Front Microbiol. 10:677.
Russell, A.D. and Hugo, W.B. 1994. Antimicrobial activity and action of silver.
Prog. Med. Chem 31:351-370.
Slawson, R.M., Trevors, J.T. and Lee, H. 1992. Silver accumulation and resistance in
Pseudomonas stutzeri
.
Arch. Microbiol. 158:398-404.
Stewart, P.S. 2015. Antimicrobial tolerance in biofilms.
Microbiol. Spectr. 3:
Stewart, P.S., White, B., Boegli, L., Hamerly, T., Williamson, K.S., Franklin, M.J., Bothner, B., James, G.A., Fisher, S., Vital-Lopez, F.G. and Wallqvist, A. 2019. Conceptual model of biofilm antibiotic tolerance that integrates phenomena of diffusion, metabolism, gene expression, and physiology.
J. Bacteriol. 22:e00307-19.
Tarbah, F. and Goodman, R.N. 1987. Systemic spread of
Agrobacterium tumefaciens biovar 3 in the vascular system of grapes.
Phytopathology 77:915-920.
Urrea, C.A., Harveson, R.M., Nielsen, K. and Venegas, J. 2008. Identification of sources of bacterial wilt resistance in dry beans (Phaseolus vulgaris L.). Ann. Rep. Bean Improv. Coop. 51:58-59.
Velmourougane, K., Prasanna, R. and Saxena, A.K. 2017. Agriculturally important microbial biofilms: present status and future prospects.
J. Basic Microbiol. 57:548-573.
Villa, F., Cappitelli, F., Cortesi, P. and Kunova, A. 2017. Fungal biofilms: targets for the development of novel strategies in plant disease management.
Front Microbiol. 8:654.
Wilking, J.N., Zaburdaev, N., De Volder, M., Losick, R., Brenner, M.P. and Weitz, D.A. 2002. Liquid transport facilitated by channels in
Bacillus subtilis biofilms.
Proc. Natl. Acad. Sci. U. S. A. 110:848-852.
Wilking, J.N., Zaburdaev, V., De Volder, M., Losick, R., Brenner, M.P. and Weitz, D.A. 2013. Liquid transport facilitated by channels in
Bacillus subtilis biofilms.
Proc. Natl. Acad. Sci. U. S. A. 110:848-852.
Yan, J. and Bassler, B.L. 2019. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms.
Cell Host Microbe. 26:15-21.