Abbott, D. W. and Boraston, A. B. 2008. Structural biology of pectin degradation by
Enterobacteriaceae
.
Microbiol. Mol. Biol. Rev 72:301-316.
Adeolu, M., Alnajar, S., Naushad, S. and Gupta, R. S. 2016. Genome-based phylogeny and taxonomy of the ‘
Enterobacteriales’: proposal for
Enterobacterales ord. nov. divided into the families
Enterobacteriaceae,
Erwiniaceae fam. nov.,
Pectobacteriaceae fam. nov.,
Yersiniaceae fam. nov.,
Hafniaceae fam. nov.,
Morganellaceae fam. nov., and
Budviciaceae fam. nov.
Int. J. Syst. Evol. Microbiol 66:5575-5599.
Andersen, G. L., Beattie, G. A. and Lindow, S. E. 1998. Molecular characterization and sequence of a methionine biosynthetic locus from
Pseudomonas syringae
.
J. Bacteriol 180:4497-4507.
Barras, F., van Gijsegem, F. and Chatterjee, A. K. 1994. Extracellular enzymes and pathogenesis of soft-rot
Erwinia
.
Annu. Rev. Phytopathol 32:201-234.
Basavanna, S., Chimalapati, S., Maqbool, A., Rubbo, B., Yuste, J., Wilson, R. J., Hosie, A., Ogunniyi, A. D., Paton, J. C., Thomas, G. and Brown, J. S. 2013. The effects of methionine acquisition and synthesis on
Streptococcus pneumoniae growth and virulence.
PLoS ONE 8:e49638.
Bell, K. S., Sebaihia, M., Pritchard, L., Holden, M. T. G., Hyman, L. J., Holeva, M. C., Thomson, N. R., Bentley, S. D., Churcher, L. J. C., Mungall, K., Atkin, R., Bason, N., Brooks, K., Chillingworth, T., Clark, K., Doggett, J., Fraser, A., Hance, Z., Hauser, H., Jagels, K., Moule, S., Norbertczak, H., Ormond, D., Price, C., Quail, M. A., Sanders, M., Walker, D., Whitehead, S., Salmond, G. P. C., Birch, P. R. J., Parkhill, J. and Toth, I. K. 2004. Genome sequence of the enterobacterial phytopathogen
Erwinia carotovora subsp.
atroseptica and characterization of virulence factors.
Proc. Natl. Acad. Sci. U. S. A 101:11105-11110.
Bellieny-Rabelo, D., Nkomo, N. P., Shyntum, D. Y. and Moleleki, L. N. 2020. Horizontally acquired quorum-sensing regulators recruited by the PhoP regulatory network expand the host adaptation repertoire in the phytopathogen
Pectobacterium brasiliense
.
mSystems 5:e00650-19.
Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J. and Rabinowitz, J. D. 2009. Absolute metabolite concentrations and implied enzyme active site occupancy in
Escherichia coli
.
Nat. Chem. Biol 5:593-599.
Bernal, P., Llamas, M. A. and Filloux, A. 2018. Type VI secretion systems in plant-associated bacteria.
Environ. Microbiol 20:1-15.
Bowden, G. and Li, Y. H. 1997. Nutritional influences on biofilm development.
Adv. Dent. Res 11:81-99.
Charkowski, A., Blanco, C., Condemine, G., Expert, D., Franza, T., Hayes, C., Hugouvieux-Cotte-Pattat, N., López Solanilla, E., Low, D., Moleleki, L., Pirhonen, M., Pitman, A., Perna, N., Reverchon, S., Rodríguez Palenzuela, P., San Francisco, M., Toth, I., Tsuyumu, S., van der Waals, J., van der Wolf, J., van Gijsegem, F., Yang, C.-H. and Yedidia, I. 2012. The role of secretion systems and small molecules in soft-rot
Enterobacteriaceae pathogenicity.
Annu. Rev. Phytopathol 50:425-449.
Charkowski, A. O. 2007. The soft rot
Erwinia
. In:
Plant-associated bacteria, eds. by S. S. Gnanamanickam, pp. 423-505. Springer, Dordrecht, Germany.
Charkowski, A. O. 2018. The changing face of bacterial soft-rot diseases.
Annu. Rev. Phytopathol 56:269-288.
Chun, B. H., Han, D. M., Kim, K. H., Jeong, S. E., Park, D. and Jeon, C. O. 2019. Genomic and metabolic features of
Tetragenococcus halophilus as revealed by pan-genome and transcriptome analyses.
Food Microbiol 83:36-47.
Coplin, D. L., Sequeira, L. and Hanson, R. S. 1974.
Pseudomonas solanacearum: virulence of biochemical mutants.
Can. J. Microbiol 20:519-529.
Cubitt, M. F., Hedley, P. E., Williamson, N. R., Morris, J. A., Campbell, E., Toth, I. K. and Salmond, G. P. C. 2013. A metabolic regulator modulates virulence and quorum sensing signal production in
Pectobacterium atrosepticum
.
Mol. Plant-Microbe Interact 26:356-366.
den Hengst, C. D., Groeneveld, M., Kuipers, O. P. and Kok, J. 2006. Identification and functional characterization of the
Lactococcus lactis CodY-regulated branched-chain amino acid permease BcaP (CtrA).
J. Bacteriol 188:3280-3289.
Duarte, V., De Boer, S. H., Ward, L. J. and De Oliveira, A. M. R. 2004. Characterization of atypical
Erwinia carotovora strains causing blackleg of potato in Brazil.
J. Appl. Microbiol 96:535-545.
Eisfeld, C., Schijven, J. F., van der Wolf, J. M., Medema, G., Kruisdijk, E. and van Breukelen, B. M. 2022. Removal of bacterial plant pathogens in columns filled with quartz and natural sediments under anoxic and oxygenated conditions.
Water Res 220:118724.
Ejim, L. J., D’Costa, V. M., Elowe, N. H., Loredo-Osti, J. C., Malo, D. and Wright, G. D. 2004. Cystathionine beta-lyase is important for virulence of
Salmonella enterica serovar Typhimurium.
Infect. Immun 72:3310-3314.
Fatima, U. and Senthil-Kumar, M. 2015. Plant and pathogen nutrient acquisition strategies.
Front. Plant Sci 6:750.
Ferla, M. P. and Patrick, W. M. 2014. Bacterial methionine biosynthesis.
Microbiology (Reading) 160(Pt 8):1571-1584.
Holeva, M. C., Bell, K. S., Hyman, L. J., Avrova, A. O., Whisson, S. C., Birch, P. R. and Toth, I. K. 2004. Use of a pooled transposon mutation grid to demonstrate roles in disease development for
Erwinia carotovora subsp.
atroseptica putative type III secreted effector (DspE/A) and helper (HrpN) proteins.
Mol. Plant-Microbe Interact 17:943-950.
Hossain, M. M., Shibata, S., Aizawa, S.-I. and Tsuyumu, S. 2005. Motility is an important determinant for pathogenesis of
Erwinia carotovora subsp.
carotovora
.
Physiol. Mol. Plant Pathol 66:134-143.
Hullo, M.-F., Auger, S., Dassa, E., Danchin, A. and Martin-Verstraete, I. 2004. The
metNPQ operon of
Bacillus subtilis encodes an ABC permease transporting methionine sulfoxide, D- and L-methionine.
Res. Microbiol 155:80-86.
Husna, A. U., Wang, N., Cobbold, S. A., Newton, H. J., Hocking, D. M., Wilksch, J. J., Scott, T. A., Davies, M. R., Hinton, J. C., Tree, J. J., Lithgow, T., McConville, M. J. and Strugnell, R. A. 2018. Methionine biosynthesis and transport are functionally redundant for the growth and virulence of
Salmonella Typhimurium.
J. Biol. Chem 293:9506-9519.
Islam, R., Brown, S., Taheri, A. and Dumenyo, C. K. 2019. The gene encoding NAD-dependent epimerase/dehydratase,
wcaG, affects cell surface properties, virulence, and extracellular enzyme production in the soft rot phytopathogen,
Pectobacterium carotovorum
.
Microorganisms 7:172.
Islamov, B., Petrova, O., Mikshina, P., Kadyirov, A., Vorob’ev, V., Gogolev, Y. and Gorshkov, V. 2021. The role of
Pectobacterium atrosepticum exopolysaccharides in plant-pathogen interactions.
Int. J. Mol. Sci 22:12781.
Jee, S., Choi, J.-G., Lee, Y.-G., Kwon, M., Hwang, I. and Heu, S. 2020. Distribution of
Pectobacterium species isolated in South Korea and comparison of temperature effects on pathogenicity.
Plant Pathol. J 36:346-354.
Jochim, A., Shi, T., Belikova, D., Schwarz, S., Peschel, A. and Heilbronner, S. 2019. Methionine limitation impairs pathogen expansion and biofilm formation capacity.
Appl. Environ. Microbiol 85:e00177-19.
Kim, H., Kim, M., Jee, S.-N., Heu, S. and Ryu, S. 2022. Development of a bacteriophage cocktail against
Pectobacterium carotovorum subsp.
carotovorum and its effects on
Pectobacterium virulence.
Appl. Environ. Microbiol 88:e0076122.
Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, GT., Farris, M. A., Roop, R. M. 2nd and Peterson, K. M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes.
Gene 166:175-176.
Lee, D. H., Kim, J.-B., Lim, J.-A., Han, S.-W. and Heu, S. 2014. Genetic diversity of
Pectobacterium carotovorum subsp.
brasiliensis isolated in Korea.
Plant Pathol. J 30:117-124.
Lee, D. H., Lim, J.-A., Lee, J., Roh, E., Jung, K., Choi, M., Oh, C., Ryu, S., Yun, J. and Heu, S. 2013. Characterization of genes required for the pathogenicity of
Pectobacterium carotovorum subsp.
carotovorum Pcc21 in Chinese cabbage.
Microbiology (Reading) 159(Pt 7):1487-1496.
Lee, S. M., Choi, Y. H., Kim, H., Kim, H. T. and Choi, G. J. 2020. Development of an efficient bioassay method for testing resistance to bacterial spot rot of Chinese cabbage.
Res. Plant Dis 26:159-169.
Lee, Y., Kim, Y., Yeom, S., Kim, S., Park, S., Jeon, C. O. and Park, W. 2008. The role of disulfide bond isomerase A (DsbA) of
Escherichia coli O157:H7 in biofilm formation and virulence.
FEMS Microbiol. Lett 278:213-222.
Lee, Y., Oh, S. and Park, W. 2009. Inactivation of the
Pseudomonas putida KT2440
dsbA gene promotes extracellular matrix production and biofilm formation.
FEMS Microbiol. Lett 297:38-48.
Lee, Y., Seo, H., Yeom, J. and Park, W. 2011. Molecular characterization of the extracellular matrix in a
Pseudomonas putida dsbA mutant: implications for acidic stress defense and plant growth promotion.
Res. Microbiol 162:302-310.
Liu, F., Hu, M., Zhang, Z., Xue, Y., Chen, S., Hu, A., Zhang, L.-H. and Zhou, J. 2022.
Dickeya manipulates multiple quorum sensing systems to control virulence and collective behaviors.
Front. Plant Sci 13:838125.
Liu, Q., Chen, N., Chen, H. and Huang, Y. 2020. RNA-Seq analysis of differentially expressed genes of
Staphylococcus epidermidis isolated from postoperative endophthalmitis and the healthy conjunctiva.
Sci. Rep 10:14234.
López-Solanilla, E., García-Olmedo, F. and Rodríguez-Palenzuela, P. 1998. Inactivation of the
sapA to
sapF locus of
Erwinia chrysanthemi reveals common features in plant and animal bacterial pathogenesis.
Plant Cell 10:917-924.
Ma, B., Hibbing, M. E., Kim, H.-S., Reedy, R. M., Yedidia, I., Breuer, J., Breuer, J., Glasner, J. D., Perna, N. T., Kelman, A. and Charkowski, A. O. 2007. Host range and molecular phylogenies of the soft rot enterobacterial genera
Pectobacterium and
Dickeya
.
Phytopathology 97:1150-1163.
Malko, A., Frantsuzov, P., Nikitin, M., Statsyuk, N., Dzhavakhiya, V. and Golikov, A. 2019. Potato pathogens in Russia’s regions: an instrumental survey with the use of real-time PCR/RT-PCR in matrix format.
Pathogens 8:18.
Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G. and Foster, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology.
Mol. Plant Pathol 13:614-629.
Marković, S., Stanković, S., Jelušić, A., Iličić, R., Kosovac, A., Poštić, D. and Popović, T. 2021. Occurrence and identification of
Pectobacterium carotovorum subsp.
brasiliensis and
Dickeya dianthicola causing blackleg in some potato fields in Serbia.
Plant Dis 105:1080-1090.
Mattinen, L., Nissinen, R., Riipi, T., Kalkkinen, N. and Pirhonen, M. 2007. Host-extract induced changes in the secretome of the plant pathogenic bacterium
Pectobacterium atrosepticum
.
Proteomics 7:3527-3537.
Mattinen, L., Somervuo, P., Nykyri, J., Nissinen, R., Kouvonen, P., Corthals, G., Auvinen, P., Aittamaa, M., Valkonen, J. P. T. and Pirhonen, M. 2008. Microarray profiling of host-extract-induced genes and characterization of the type VI secretion cluster in the potato pathogen
Pectobacterium atrosepticum
.
Microbiology (Reading) 154(Pt 8):2387-2396.
Merlin, C., Gardiner, G., Durand, S. and Masters, M. 2002. The
Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ).
J. Bacteriol 184:5513-5517.
Mole, B. M., Baltrus, D. A., Dangl, J. L. and Grant, S. R. 2007. Global virulence regulation networks in phytopathogenic bacteria.
Trends Microbiol 15:363-371.
Monson, R., Burr, T., Carlton, T., Liu, H., Hedley, P., Toth, I. and Salmond, G. P. C. 2013. Identification of genes in the VirR regulon of
Pectobacterium atrosepticum and characterization of their roles in quorum sensing-dependent virulence.
Environ. Microbiol 15:687-701.
Mulholland, V., Hinton, J. C., Sidebotham, J., Toth, I. K., Hyman, L. J., Perombelon, M. C., Reeves, P. J. and Salmond, G. P. C. 1993. A pleiotropic reduced virulence (Rvi−) mutant of
Erwinia carotovora subspecies
atroseptica is defective in flagella assembly proteins that are conserved in plant and animal bacterial pathogens.
Mol. Microbiol 9:343-356.
Muturi, P., Yu, J., Li, J., Jiang, M., Maina, A. N., Kariuki, S., Mwaura, F. B. and Wei, H. 2018. Isolation and characterization of pectolytic bacterial pathogens infecting potatoes in Nakuru County, Kenya.
J. Appl. Microbiol 124:1580-1588.
Park, T.-H., Choi, B.-S., Choi, A.-Y., Choi, I.-Y., Heu, S. and Park, B.-S. 2012. Genome sequence of
Pectobacterium carotovorum subsp.
carotovorum strain PCC21, a pathogen causing soft rot in Chinese cabbage.
J. Bacteriol 194:6345-6346.
Pérombelon, M. C. M. 2002. Potato diseases caused by soft rot erwinias: an overview of pathogenesis.
Plant Pathol 51:1-12.
Perombelon, M. C. M. and Kelman, A. 1980. Ecology of the soft rot
Erwinias
.
Annu. Rev. Phytopathol 18:361-387.
Plener, L., Boistard, P., González, A., Boucher, C. and Genin, S. 2012. Metabolic adaptation of
Ralstonia solanacearum during plant infection: a methionine biosynthesis case study.
PLoS ONE 7:e36877.
Portier, P., Pédron, J., Taghouti, G., Fischer-Le Saux, M., Caullireau, E., Bertrand, C., Laurent, A., Chawki, K., Oulgazi, S., Moumni, M., Andrivon, D., Dutrieux, C., Faure, D., Hélias, V. and Barny, M.-A. 2019. Elevation of
Pectobacterium carotovorum subsp.
odoriferum to species level as
Pectobacterium odoriferum sp. nov., proposal of
Pectobacterium brasiliense sp. nov. and
Pectobacterium actinidiae sp. nov., emended description of
Pectobacterium carotovorum and description of
Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants.
Int. J. Syst. Evol. Microbiol 69:3207-3216.
Rochex, A. and Lebeault, J.-M. 2007. Effects of nutrients on biofilm formation and detachment of a
Pseudomonas putida strain isolated from a paper machine.
Water Res 41:2885-2892.
Rossmann, S., Dees, M. W., Perminow, J., Meadow, R. and Brurberg, M. B. 2018. Soft rot
Enterobacteriaceae are carried by a large range of insect species in potato fields.
Appl. Environ. Microbiol 84:e00281-18.
Ryu, C.-M. 2015. Against friend and foe: type 6 effectors in plant-associated bacteria.
J. Microbiol 53:201-208.
Shyntum, D. Y., Nkomo, N. P., Shingange, N. L., Gricia, A. R., Bellieny-Rabelo, D. and Moleleki, L. N. 2019. The impact of type VI secretion system, bacteriocins and antibiotics on bacterial competition of
Pectobacterium carotovorum subsp.
brasiliense and the regulation of carbapenem biosynthesis by iron and the ferric-uptake regulator.
Front. Microbiol 10:2379.
Taté, R., Riccio, A., Caputo, E., Iaccarino, M. and Patriarca, E. J. 1999. The
Rhizobium etli metZ gene is essential for methionine biosynthesis and nodulation of
Phaseolus vulgaris
.
Mol. Plant-Microbe Interact 12:24-34.
Torres, M., Uroz, S., Salto, R., Fauchery, L., Quesada, E. and Llamas, I. 2017. HqiA, a novel quorum-quenching enzyme which expands the AHL lactonase family.
Sci. Rep 7:943.
Toth, I. K., Bell, K. S., Holeva, M. C. and Birch, P. R. 2003. Soft rot erwiniae: from genes to genomes.
Mol. Plant Pathol 4:17-30.
Valecillos, A. M., Palenzuela, P. R. and López-Solanilla, E. 2006. The role of several multidrug resistance systems in
Erwinia chrysanthemi pathogenesis.
Mol. Plant-Microbe Interact 19:607-613.
van der Merwe, J. J., Coutinho, T. A., Korsten, L. and van der Waals, J. E. 2010.
Pectobacterium carotovorum subsp.
brasiliensis causing blackleg on potatoes in South Africa.
Eur. J. Plant Pathol 126:175-185.
Wang, C., Pu, T., Lou, W., Wang, Y., Gao, Z., Hu, B. and Fan, J. 2018. Hfq, a RNA chaperone, contributes to virulence by regulating plant cell wall-degrading enzyme production, type VI secretion system expression, bacterial competition, and suppressing host defense response in
Pectobacterium carotovorum
.
Mol. Plant-Microbe Interact 31:1166-1178.
Weissbach, H. and Brot, N. 1991. Regulation of methionine synthesis in
Escherichia coli
.
Mol. Microbiol 5:1593-1597.
Yi, X., Yamazaki, A., Biddle, E., Zeng, Q. and Yang, C.-H. 2010. Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in
Dickeya dadantii
.
Mol. Microbiol 77:787-800.