Bahar, O., De la Fuente, L. and Burdman, S. 2010. Assessing adhesion, biofilm formation and motility of
Acidovorax citrulli using microfluidic flow chambers.
FEMS Microbiol. Lett 312:33-39.
Bahar, O., Goffer, T. and Burdman, S. 2009. Type IV pili are required for virulence, twitching motility, and biofilm formation of
Acidovorax avenae subsp.
citrulli.
Mol. Plant Microbe-Interact 22:909-920.
Burdman, S., Kots, N., Kritzman, G. and Kopelowitz, J. 2005. Molecular, physiological, and host-range characterization of
Acidovorax avenae subsp.
citrulli isolates from watermelon and melon in Israel.
Plant Dis 89:1339-1347.
Choi, H., Fermin, D. and Nesvizhskii, A. I 2008. Significance analysis of spectral count data in label-free shotgun proteomics.
Mol. Cell. Proteomics 7:2373-2385.
Côté, J-P, French, S, Gehrke, SS, MacNair, CR, Mangat, CS, Bharat, A and Brown, ED 2016. The genome-wide interaction network of nutrient stress genes in
Escherichia coli.
mBio 7:e01714-16.
Darin, N., Reid, E., Prunetti, L., Samuelsson, L., Husain, R. A., Wilson, M., El Yacoubi, B., Footitt, E., Chong, W. K., Wilson, L. C., Prunty, H., Pope, S., Heales, S., Lascelles, K., Champion, M., Wassmer, E., Veggiotti, P., de Crécy-Lagard, V., Mills, P. B and Clayton, P. T 2016. Mutations in
PROSC disrupt cellular pyridoxal phosphate homeostasis and cause vitamin B
6-dependent epilepsy.
Am. J. Hum. Genet 99:1325-1337.
El Qaidi, S., Yang, J., Zhang, J.-R., Metzger, D. W and Bai, G. 2013. The vitamin B
6 biosynthesis pathway in
Streptococcus pneumoniae is controlled by pyridoxal 5′-phosphate and the transcription factor PdxR and has an impact on ear infection.
J. Bacteriol 195:2187-2196.
Elias, J. E and Gygi, S. P 2007. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry.
Nat. Methods 4:207-214.
Ito, T., Iimori, J., Takayama, S., Moriyama, A., Yamauchi, A., Hemmi, H. and Yoshimura, T. 2013. Conserved pyridoxal protein that regulates Ile and Val metabolism.
J. Bacteriol 195:5439-5449.
Ito, T., Yamamoto, K., Hori, R., Yamauchi, A., Downs, D. M., Hemmi, H. and Yoshimura, T. 2019. Conserved pyridoxal 5′-phosphate-binding protein YggS impacts amino acid metabolism through pyridoxine 5′-phosphate in
Escherichia coli.
Appl. Environ. Microbiol 85:e00430-19.
Jiménez-Guerrero, I., Pérez-Montaño, F., Da Silva, G. M., Wagner, N., Shkedy, D., Zhao, M., Pizarro, L., Bar, M., Walcott, R., Sessa, G., Pupko, T. and Burdman, S. 2020. Show me your secret(ed) weapons: a multifaceted approach reveals a wide arsenal of type III-secreted effectors in the cucurbit pathogenic bacterium
Acidovorax citrulli and novel effectors in the
Acidovorax genus.
Mol. Plant Pathol 21:17-37.
Johnson, K. L and Walcott, R. R 2013. Quorum sensing contributes to seed-to-seedling transmission of
Acidovorax citrulli on watermelon.
J. Phytopathol 161:562-573.
Kim, M., Lee, J., Heo, L. and Han, S.-W 2020. Putative bifunctional chorismate mutase/prephenate dehydratase contributes to the virulence of
Acidovorax citrulli.
Front. Plant Sci 11:569552.
Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. 2nd and Peterson, K. M 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes.
Gene 166:175-176.
Latin, R. X and Hopkins, D. L 1995. Bacterial fruit blotch of watermelon: the hypothetical exam question becomes reality.
Plant Dis 79:761-765.
Lee, J., Heo, L. and Han, S.-W 2021. Comparative proteomic analysis for a putative pyridoxal phosphate-dependent aminotransferase required for virulence in
Acidovorax citrulli.
Plant Pathol. J 37:673-680.
Lee, J., Lee, J., Cho, Y., Choi, J. and Han, S.-W 2022. A putative 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase is involved in the virulence, carbohydrate metabolism, biofilm formation, twitching halo, and osmotic tolerance in
Acidovorax citrulli.
Front. Plant Sci 13:1039420.
Lee, Y., Kim, Y., Yeom, S., Kim, S., Park, S., Jeon, C. O and Park, W. 2008. The role of disulfide bond isomerase A (DsbA) of
Escherichia coli O157:H7 in biofilm formation and virulence.
FEMS Microbiol. Lett 278:213-222.
Liu, J., Tian, Y., Zhao, Y., Zeng, R., Chen, B., Hu, B. and Walcott, R. R 2019. Ferric uptake regulator (FurA) is required for
Acidovorax citrulli virulence on watermelon.
Phytopathology 109:1997-2008.
Pal, S., Verma, J., Mallick, S., Rastogi, S. K., Kumar, A. and Ghosh, A. S 2019. Absence of the glycosyltransferase WcaJ in
Klebsiella pneumoniae ATCC13883 affects biofilm formation, increases polymyxin resistance and reduces murine macrophage activation.
Microbiology (Reading) 165:891-904.
Park, H.-J., Seong, H. J., Sul, W. J., Oh, C.-S and Han, S.-W 2017. Complete genome sequence of Acidovorax citrulli strain KACC17005, a causal agent for bacterial fruit blotch on watermelon. Korean J. Microbiol 53:340-341.
Prunetti, L., El Yacoubi, B., Schiavon, C. R., Kirkpatrick, E., Huang, L., Bailly, M., El Badawi-Sidhu, M., Harrison, K., Gregory, J. F., Fiehn, O., Hanson, A. D and de Crécy-Lagard, V. 2016. Evidence that COG0325 proteins are involved in PLP homeostasis.
Microbiology (Reading) 162:694-706.
Pustelny, C., Brouwer, S., Müsken, M., Bielecka, A., Dötsch, A., Nimtz, M. and Häussler, S. 2013. The peptide chain release factor methyltransferase PrmC is essential for pathogenicity and environmental adaptation of
Pseudomonas aeruginosa PA14.
Environ. Microbiol 15:597-609.
Rahimi-Midani, A., Kim, J.-O., Kim, J. H., Lim, J., Ryu, J.-G., Kim, M.-K and Choi, T.-J 2020. Potential use of newly isolated bacteriophage as a biocontrol against
Acidovorax citrulli.
Arch. Microbiol 202:377-389.
Schaad, N. W., Sowell, G. Jr., Goth, R. W., Colwell, R. R and Webb, R. E 1978.
Pseudomonas pseudoalcaligenes subsp.
citrulli subsp. nov.
Int. J. Syst. Evol. Bacteriobiol 28:117-125.
Shrestha, R. K., Rosenberg, T., Makarovsky, D., Eckshtain-Levi, N., Zelinger, E., Kopelowitz, J., Sikorski, J. and Burdman, S. 2013. Phenotypic variation in the plant pathogenic bacterium
Acidovorax citrulli.
PLoS ONE 8:e73189.
Tatusov, R. L., Galperin, M. Y., Natale, D. A and Koonin, E. V 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution.
Nucleic Acids Res 28:33-36.
Tian, Y., Zhao, Y., Wu, X., Liu, F., Hu, B. and Walcott, R. R 2015. The type VI protein secretion system contributes to biofilm formation and seed-to-seedling transmission of
Acidovorax citrulli on melon.
Mol. Plant Pathol 16:38-47.
Vu, H. N., Ito, T. and Downs, D. M 2020. The role of YggS in vitamin B
6 homeostasis in
Salmonella enterica is informed by heterologous expression of yeast
SNZ3.
J. Bacteriol 202:e00383-20.
Wang, Y., Zhao, Y., Xia, L., Chen, L., Liao, Y., Chen, B., Liu, Y., Gong, W., Tian, Y. and Hu, B. 2022.
YggS encoding pyridoxal 5′-phosphate binding protein is required for
Acidovorax citrulli virulence.
Front. Microbiol 12:783862.
Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K. and De Ley, J. 1992. Transfer of several phytopathogenic
Pseudomonas species to
Acidovorax as
Acidovorax avenae subsp.
avenae subsp. nov., comb. nov.,
Acidovorax avenae subsp.
citrulli,
Acidovorax avenae subsp.
cattleyae, and
Acidovorax konjaci.
Int. J. Syst. Bacteriol 42:107-119.
Xie, F., Li, G., Wang, Y., Zhang, Y., Zhou, L., Wang, C., Liu, S., Liu, S. and Wang, C. 2017. Pyridoxal phosphate synthases PdxS/PdxT are required for
Actinobacillus pleuropneumoniae viability, stress tolerance and virulence.
PLoS ONE 12:e0176374.
Zhang, X., Zhao, M., Yan, J., Yang, L., Yang, Y., Guan, W., Walcott, R. and Zhao, T. 2018. Involvement of
hrpX and
hrpG in the virulence of
Acidovorax citrulli strain Aac5, causal agent of bacterial fruit blotch in cucurbits.
Front. Microbiol 9:507.
Zivanovic, M. and Walcott, R. R 2017. Further characterization of genetically distinct groups of
Acidovorax citrulli strains.
Phytopathology 107:29-35.